Extensions 1→N→G→Q→1 with N=C32 and Q=C3×D4

Direct product G=N×Q with N=C32 and Q=C3×D4
dρLabelID
D4×C33108D4xC3^3216,151

Semidirect products G=N:Q with N=C32 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×D4) = C3×S3≀C2φ: C3×D4/C3D4 ⊆ Aut C32124C3^2:(C3xD4)216,157
C322(C3×D4) = He34D4φ: C3×D4/C4C6 ⊆ Aut C32366+C3^2:2(C3xD4)216,51
C323(C3×D4) = He36D4φ: C3×D4/C22C6 ⊆ Aut C32366C3^2:3(C3xD4)216,60
C324(C3×D4) = C3×D6⋊S3φ: C3×D4/C6C22 ⊆ Aut C32244C3^2:4(C3xD4)216,121
C325(C3×D4) = C3×C3⋊D12φ: C3×D4/C6C22 ⊆ Aut C32244C3^2:5(C3xD4)216,122
C326(C3×D4) = D4×He3φ: C3×D4/D4C3 ⊆ Aut C32366C3^2:6(C3xD4)216,77
C327(C3×D4) = C32×D12φ: C3×D4/C12C2 ⊆ Aut C3272C3^2:7(C3xD4)216,137
C328(C3×D4) = C3×C12⋊S3φ: C3×D4/C12C2 ⊆ Aut C3272C3^2:8(C3xD4)216,142
C329(C3×D4) = C32×C3⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C3236C3^2:9(C3xD4)216,139
C3210(C3×D4) = C3×C327D4φ: C3×D4/C2×C6C2 ⊆ Aut C3236C3^2:10(C3xD4)216,144

Non-split extensions G=N.Q with N=C32 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C32.(C3×D4) = D4×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C32366C3^2.(C3xD4)216,78
C32.2(C3×D4) = C9×D12φ: C3×D4/C12C2 ⊆ Aut C32722C3^2.2(C3xD4)216,48
C32.3(C3×D4) = C9×C3⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C32362C3^2.3(C3xD4)216,58
C32.4(C3×D4) = D4×C3×C9central extension (φ=1)108C3^2.4(C3xD4)216,76

׿
×
𝔽